Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474724

RESUMEN

This study investigates the immunomodulatory potential of Galium aparine L. (GAE) in immunodeficient animals. In this study, animals were categorized into five groups: the normal group, CYP group (cyclophosphamide intraperitoneal injection), GA5 group (cyclophosphamide + 5 µg GAE), GA50 group (cyclophosphamide + 50 µg GAE), and GA500 group (cyclophosphamide + 500 µg GAE). The CYP group exhibited significantly reduced spleen weights compared to the normal group, while the groups obtaining GAE displayed a dose-dependent increase in spleen weight. Furthermore, the GAE demonstrated dose-dependent enhancement of splenocyte proliferating activity, with significant increases observed in both LPS and ConA-induced assays. NK cell activity significantly increased in the GA50 and GA500 groups compared to the CYP group. Cytokine analysis revealed a significant increase in IL-6, TNF-α, and IFN-γ levels in ConA-induced splenocytes treated with GAE. Gene expression analysis identified 2434 DEG genes in the extract groups. Notable genes, such as Entpd1, Pgf, Thdb, Syt7, Sqor, and Rsc1al, displayed substantial differences in individual gene expression levels, suggesting their potential as target genes for immune enhancement. In conclusion, Galium aparine L. extract exhibits immunomodulatory properties. The observed gene expression changes further support the potential of Galium aparine L. extract as a natural agent for immune augmentation.


Asunto(s)
Galium , Animales , Galium/genética , Galium/metabolismo , Ciclofosfamida , Huésped Inmunocomprometido , Citocinas/metabolismo , Modelos Animales
2.
Biosens Bioelectron ; 217: 114702, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130443

RESUMEN

Messenger ribonucleic acids (mRNAs) comprise a class of small nucleic acids carrying genetic information, which exhibit very important role in medical research and diagnosis. If only the mean mRNA expression levels of the mRNA population are considered in medical research, important information linking mRNA expression and cellular function may be lost. Single-cell analysis provides valuable insights into studying its heterogeneity, signaling, and stochastic gene expression. In this study, a "bunge bedstraw herb"-type DNA machine based on DNAzyme catalyzing coupled clamping hybrid chain reaction (c-HCR) is presented. In the DNA machine, a bunge bedstraw herb-type DNA structure was first formed by hybridizing a core junction scaffold cruciform probe to a hairpin probe that can trigger the c-HCR via a target molecule in four directions. This approach can reduce the detection limit of mRNA to 5 × 10-15 M. Absolute quantification of survivin mRNA in individual cells was achieved using the DNA machine on a microfluidic chip electrophoresis platform. The reported method represents an unprecedented single-cell analysis platform for single-cell biology studies.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Galium , Técnicas Biosensibles/métodos , ADN/química , ADN/genética , ADN Catalítico/química , Galium/genética , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos , ARN Mensajero/análisis , ARN Mensajero/genética , Survivin/genética
3.
Cells ; 10(6)2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072453

RESUMEN

The catalytic domain of most 'cut and paste' DNA transposases have the canonical RNase-H fold, which is also shared by other polynucleotidyl transferases such as the retroviral integrases and the RAG1 subunit of V(D)J recombinase. The RNase-H fold is a mixture of beta sheets and alpha helices with three acidic residues (Asp, Asp, Glu/Asp-DDE/D) that are involved in the metal-mediated cleavage and subsequent integration of DNA. Human THAP9 (hTHAP9), homologous to the well-studied Drosophila P-element transposase (DmTNP), is an active DNA transposase that, although domesticated, still retains the catalytic activity to mobilize transposons. In this study we have modeled the structure of hTHAP9 using the recently available cryo-EM structure of DmTNP as a template to identify an RNase-H like fold along with important acidic residues in its catalytic domain. Site-directed mutagenesis of the predicted catalytic residues followed by screening for DNA excision and integration activity has led to the identification of candidate Ds and Es in the RNaseH fold that may be a part of the catalytic triad in hTHAP9. This study has helped widen our knowledge about the catalytic activity of a functionally uncharacterized transposon-derived gene in the human genome.


Asunto(s)
Dominio Catalítico/fisiología , Integrasas/metabolismo , Transposasas/metabolismo , Elementos Transponibles de ADN/fisiología , Galium/genética , Galium/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/genética , Mutagénesis Sitio-Dirigida/métodos , Transposasas/genética
4.
PLoS One ; 15(2): e0226668, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32017769

RESUMEN

To accurately evaluate expression levels of target genes, stable internal reference genes is required for normalization of quantitative real-time PCR (qRT-PCR) data. However, there have been no systematical investigation on the stability of reference genes used in the bedstraw weed, Galium aparine L. (BGA). In this study, the expression profiles of seven traditionally used reference genes, namely 18S, 28S, ACT, GAPDH, EF1α, RPL7 and TBP in BGA were assessed under both biotic (developmental time and tissue), and abiotic (temperature, regions and herbicide) conditions. Four analytical algorithms (geNorm, Normfinder, BestKeeper and the ΔCt method) were used to analyze the suitability of these genes as internal reference genes. RefFinder, a comprehensive analytical software, was used to rank the overall stability of the candidate genes. The optimal normalization internal control genes were ranked as: 28S and RPL7 were best for all the different experimental conditions (developmental stages, tissues, temperature, regions and herbicide treatment); 28S and RPL7 for developmental stages; TBP and GAPDH for different tissues; 28S and GAPDH were relatively stable for different temperature; 28S and TBP were suitable for herbicide treatment. A specific set of reference genes were recommended for each experimental condition in BGA.


Asunto(s)
Galium/genética , Perfilación de la Expresión Génica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Programas Informáticos
5.
PLoS One ; 13(12): e0207615, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517138

RESUMEN

The Rubiaceae tribe Rubieae has a world-wide distribution with up to 1,000 species. These collectively exhibit an enormous ecological and morphological diversity, making Rubieae an excellent group for macro- and microevolutionary studies. Previous molecular phylogenetic analyses used only a limited sampling within the tribe or missed lineages crucial for understanding character evolution in this group. Here, we analyze sequences from two plastid spacer regions as well as morphological and biogeographic data from an extensive and evenly distributed sampling to establish a sound phylogenetic framework. This framework serves as a basis for our investigation of the evolution of important morphological characters and the biogeographic history of the Rubieae. The tribe includes three major clades, the Kelloggiinae Clade (Kelloggia), the Rubiinae Clade (Didymaea, Rubia) and the most species-rich Galiinae Clade (Asperula, Callipeltis, Crucianella, Cruciata, Galium, Mericarpaea, Phuopsis, Sherardia, Valantia). Within the Galiinae Clade, the largest genera Galium and Asperula are para- and polyphyletic, respectively. Smaller clades, however, usually correspond to currently recognized taxa (small genera or sections within genera), which may be used as starting points for a refined classification in this clade. Life-form (perennial versus annual), flower shape (long versus short corolla tube) and fruit characters (dry versus fleshy, with or without uncinate hairs) are highly homoplasious and have changed multiple times independently. Inference on the evolution of leaf whorls, a characteristic feature of the tribe, is sensitive to model choice. Multi-parted leaf whorls appear to have originated from opposite leaves with two small interpetiolar stipules that are subsequently enlarged and increased in number. Early diversification of Rubieae probably started during the Miocene in western Eurasia. Disjunctions between the Old and the New World possibly are due to connections via a North Atlantic land bridge. Diversification of the Galiineae Clade started later in the Miocene, probably in the Mediterranean, from where lineages reached, often multiple times, Africa, eastern Asia and further on the Americas and Australia.


Asunto(s)
Filogenia , Rubiaceae/genética , Teorema de Bayes , Evolución Biológica , ADN de Plantas/genética , Evolución Molecular , Galium/genética , Especiación Genética , Genoma de Plastidios/genética , Tasa de Mutación , Filogeografía/métodos , Plastidios/genética , Análisis de Secuencia de ADN/métodos
6.
Proc Biol Sci ; 285(1887)2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232155

RESUMEN

Foundational studies of chloroplast genome (plastome) evolution in parasitic plants have focused on broad trends across large clades, particularly among the Orobanchaceae, a species-rich and ecologically diverse family of root parasites. However, the extent to which such patterns and processes of plastome evolution, such as stepwise gene loss following the complete loss of photosynthesis (shift to holoparasitism), are detectable at shallow evolutionary time scale is largely unknown. We used genome skimming to assemble eight chloroplast genomes representing complete taxonomic sampling of Aphyllon sect. Aphyllon, a small clade within the Orobanchaceae that evolved approximately 6 Ma, long after the origin of holoparasitism. We show substantial plastome reduction occurred in the stem lineage, but subsequent change in plastome size, gene content, and structure has been relatively minimal, albeit detectable. This lends additional fine-grained support to existing models of stepwise plastome reduction in holoparasitic plants. Additionally, we report phylogenetic evidence based on an rbcL gene tree and assembled 60+ kb fragments of the Aphyllon epigalium mitochondrial genome indicating host-to-parasite horizontal gene transfers (hpHGT) of several genes originating from the plastome of an ancient Galium host into the mitochondrial genome of a recent common ancestor of A. epigalium Ecologically, this evidence of hpHGT suggests that the host-parasite associations between Galium and A. epigalium have been stable at least since its subspecies diverged hundreds of thousands of years ago.


Asunto(s)
Galium/parasitología , Transferencia de Gen Horizontal , Genoma del Cloroplasto/genética , Orobanchaceae/genética , Evolución Biológica , Galium/genética , Genes de Plantas , Genoma Mitocondrial , Filogenia , Selección Genética
7.
Mol Phylogenet Evol ; 126: 221-232, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29627517

RESUMEN

Galium L. is the largest genus in the tribe Rubieae, with about 667 species distributed worldwide. Previous researches mainly focused on species from the Americas and Europe. In the present paper, we greatly increased the number of samples examined from eastern Asia (especially China), representing the most comprehensive sampling of Galium to date. A total of 194 species and variations (subspecies) of Galium were sampled to determine phylogenetic relationships, using two nuclear and five chloroplast markers. Our data are largely consistent with all previous phylogenetic results and confirmed that Galium is non-monophyletic, as are most of its sections. Most members of Galium, including the Chinese taxa, fall into three large clades mixed with other genera from the Galium s.l. group; the exception being the distinct Galium paradoxum Maxim., the first diverged lineage in the Galium s.l. group, which was treated as a new genus (Pseudogalium L.-E. Yang, Z.-L. Nie & H. Sun, gen. nov.). The Galium s.s is a well-supported clade comprised entirely of Galium species, usually with six or more leaves per whorl, mostly from the Old World. Samples from G. maximowiczii (Kom.) Pobed, G. sect. Depauperata and sect. Aparinoides, together with a few from Asperula sect. Glabella and Microphysa (Schrenk ex Fisch. & C.A. Mey.) Pobed., form the second clade. The third clade comprises taxa purely from Galium that usually have four leaves per whorl, from both the New and Old World. Our results also indicated that the monotypic genus Microphysa should be retained and clarified phylogenetic relationships of some specific confused taxa from China. Unlike prior inferences, the combination of opposite leaves associated with two stipules is proposed as the ancestral characteristic of the Galium s.l. group and even the tribe. In addition, the shapes of different corolla and inflorescence types are important for distinguishing some taxa within Rubieae.


Asunto(s)
Galium/clasificación , Galium/genética , Filogenia , Teorema de Bayes , China , ADN de Cloroplastos/genética , Funciones de Verosimilitud , Especificidad de la Especie
8.
Mol Ecol ; 24(6): 1311-34, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25678149

RESUMEN

The role of glacial oscillations in shaping plant diversity has been only rarely addressed in endemics of formerly glaciated areas. The Galium pusillum group represents a rare example of an ecologically diverse and ploidy-variable species complex that exhibits substantial diversity in deglaciated northern Europe. Using AFLP and plastid and nuclear DNA sequences of 67 populations from northern, central, and western Europe with known ecological preferences, we elucidate the evolutionary history of lineages restricted to deglaciated areas and identify the eco-geographic partitioning of their genetic variation. We reveal three distinct endemic northern lineages: (i) diploids from southern Sweden + the British Isles, (ii) tetraploids from southern Scandinavia and the British Isles that show signs of ancient hybridization between the first lineage and populations from unglaciated central Europe, and (iii) tetraploids from Iceland + central Norway. Available evidence supports a stepwise differentiation of these three lineages that started at least before the last glacial maximum by processes of genome duplication, interlineage hybridization and/or allopatric evolution in distinct periglacial refugia. We reject the hypothesis of more recent postglacial speciation. Ecological characteristics of the populations under study only partly reflect genetic variation and suggest broad niches of postglacial colonizers. Despite their largely allopatric modern distributions, the north-European lineages of the G. pusillum group do not show signs of rapid postglacial divergence, in contrast to most other northern endemics. Our study suggests that plants inhabiting deglaciated areas outside the Arctic may exhibit very different evolutionary histories compared with their more thoroughly investigated high-arctic counterparts.


Asunto(s)
Galium/genética , Especiación Genética , Genética de Población , Ploidias , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Cloroplastos/genética , ADN de Plantas/genética , Galium/clasificación , Variación Genética , Islandia , Datos de Secuencia Molecular , Países Escandinavos y Nórdicos , Análisis de Secuencia de ADN , Suecia , Reino Unido
9.
J Exp Bot ; 58(6): 1497-503, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17317672

RESUMEN

Interaction between auxin and auxin-induced ethylene was suggested in previous work to up-regulate abscisic acid (ABA) biosynthesis in cleavers (Galium aparine) through stimulated cleavage of xanthophylls to xanthoxin, catalysed by 9-cis-epoxycarotenoid dioxygenase (NCED). Here, the effects of auxin on NCED gene expression were studied in relation to changes in ethylene synthesis and ABA levels. A gene from G. aparine shoot tissue was cloned based on sequence similarity to cloned NCED genes from tomato (LeNCED1), potato, Phaseolus, and Arabidopsis. When the roots of G. aparine plants were treated with 0.5 mM indole-3-acetic acid (IAA), IAA concentrations increased from 0.2 microM to 65 microM IAA in the shoot tissue after 3 h. Transient increases in GaNCED1 mRNA levels were detectable as early as 1 h after treatment and reached maximum values of 40-fold, relative to the control, after 3 h. Increases in GaNCED1 mRNA preceded increases in 1-aminocyclopropane-1-carboxylic acid and ethylene. Levels of ABA began to increase more slowly and, significantly, with a lag phase of 2 h, and reached levels 24-fold higher than those in controls after 24 h. GaNCED1 gene expression was also stimulated by auxin herbicides. The ethylene-releasing compound ethephon induced GaNCED1 transcript levels only moderately. In accordance with this, aminoethoxyvinylglycine and cobalt ions, which inhibit ethylene synthesis, only slightly affected the increase in GaNCED1 transcript levels by IAA. However, both ethylene inhibitors decreased IAA-induced ABA accumulation by up to 70%. This suggests that auxin and auxin-induced ethylene are involved in ABA accumulation. While auxin is the primary trigger for NCED gene expression, ethylene appears to enhance ABA biosynthesis, possibly by up-regulation of NCED activity post-transcriptionally.


Asunto(s)
Ácido Abscísico/metabolismo , Galium/enzimología , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Ácidos Indolacéticos/farmacología , Oxigenasas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Dioxigenasas , Etilenos/farmacología , Galium/efectos de los fármacos , Galium/genética , Regulación Enzimológica de la Expresión Génica , Proteínas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...